Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics
نویسندگان
چکیده
منابع مشابه
Two-step photon up-conversion solar cells
Reducing the transmission loss for below-gap photons is a straightforward way to break the limit of the energy-conversion efficiency of solar cells (SCs). The up-conversion of below-gap photons is very promising for generating additional photocurrent. Here we propose a two-step photon up-conversion SC with a hetero-interface comprising different bandgaps of Al0.3Ga0.7As and GaAs. The below-gap ...
متن کاملSolar energy conversion
energy—enough to power the great oceanic and atmospheric currents, the cycle of evaporation and condensation that brings fresh water inland and drives river flow, and the typhoons, hurricanes, and tornadoes that so easily destroy the natural and built landscape. The San Francisco earthquake of 1906, with magnitude 7.8, released an estimated 1017 joules of energy, the amount the Sun delivers to ...
متن کاملSolid-state Photon Enhanced Thermionic Emission for Solar Energy Conversion
Global climate imperatives require a worldwide shift away from greenhouse gasemitting activities such as fossil fuel combustion. Concentrated solar thermal installations are particularly appealing as they can store a fraction of their power in the form of heat to provide baseload power, yet current conversion efficiencies prevent them from reaching competitive market prices. One extremely promi...
متن کاملPlasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry
In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Solar Energy Materials and Solar Cells
سال: 2015
ISSN: 0927-0248
DOI: 10.1016/j.solmat.2015.04.020